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The purpose of this paper is to introduce a new analytical approach towards 
the general solution of ordinary linear differential equations (OLDEs) of 
order two. The method involves a transformation based on integral function 
in an exponential form which leads to the general solution of given 
differential equation. A special case of second order OLDEs has been 
discussed to develop the formulae and solution procedure and different 
problems have been solved to explain the solution method. Finally, the idea 
has been extended to solve the general form of second order OLDEs. 
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1. Introduction 

*A large class of problems in physics and 
engineering are modelled in the form of differential 
equations which may be linear or nonlinear. And a 
large number of these problems involve second 
order OLDEs i.e. oscillations, damped motion, 
resonance, L-R-C circuits as discussed by Zill (2016). 
The general form of second order homogeneous 
OLDE is  

 
𝑃(𝑥)𝑢′′ + 𝑄(𝑥)𝑢′ + 𝑅(𝑥)𝑢 = 0                   (1) 

 
where 𝑢 = ℎ(𝑥) is the solution of Eq. 1 and the 
coefficients 𝑃(𝑥), 𝑄(𝑥) and 𝑅(𝑥) are the functions of 
𝑥 and 𝑃(𝑥) ≠ 0. The existence of solution and the 
method to find the solution of OLDE depends upon 
the nature of these coefficient functions 𝑃(𝑥), 𝑄(𝑥) 
and 𝑅(𝑥), see Saravi (2012). Some of the OLDEs can 
be easily handled and their closed form analytical 
solutions can be obtained by means of classical 
methods. But it is not always possible to solve Eq. 1 
in its general form. We try to formulate a method of 
solution by narrowing down the scope of these 
coefficient functions. For example, if we choose 𝑃(𝑥),
𝑄(𝑥) and 𝑅(𝑥) as constant functions then it is very 
easy to transform the differential Eq. 1 to its 
corresponding algebraic equation by applying the 
transformation 𝑢 = 𝑒𝑚𝑥, see Zill (2016). The roots of 
algebraic equation corresponding to Eq. 1 yield 
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general solution to Eq. 1 by applying traditional 
methods. Similarly, if we restrict the coefficient 
functions of Eq. 1 as 𝑃(𝑥) = 𝑥2, 𝑄(𝑥) = 𝑥and 𝑅(𝑥) =
1 continuous over the interval (0, ∞) then Eq. 1 
becomes well known Cauchy-Euler equation which 
can also be solved by transformation method by 
using the transformation 𝑢 = 𝑥𝑚, see Zill (2016). In 
the same way, many attempts have been made to 
transform Eq. 1 into simple forms to make it solvable 
with the help of different transformations i.e. Laplace 
transformation, theory of natural transformation, 
Aboodh transformation, Adomian decomposition, 
operator factorization, analytical extension and 
many other discussed by Geisbauer (2007), Hasan 
(2012), Kim (2016), Mohammed and Zeleke (2015), 
Robin (2007), Saravi (2012), Wilmer III and Costa 
(2008), Johnson et al. (2008), and Belgacem and 
Silambarasan (2013). 
The summudu transformation has also proved its 
importance in engineering mathematics and 
problem solving. It may be used to solve problems 
without resorting them into a new frequency 
domain. Belgacem and Karaballi (2006), Belgacem 
(2006), Katatbeh and Belgacem (2011), Belgacem et 
al. (2003), and Belgacem and Silambarasan (2017) 
made theoretical investigations to establish 
fundamental and advanced properties in various 
aspects of summudu transform. Due to mathematical 
simplicity and effectiveness, the summudu 
transformation has been applied to solve Maxwell's 
equations for transient electromagnetic waves 
propagation and Bessel equation, see Hussain and 
Belgacern (2007), Belgacem and Silambarasan 
(2012), Belgacem (2010). Summudu transformation 
is equally well applicable to nonlinear, fractional and 
partial differential equations, see Touchent and 
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Belgacem (2015) and Belgacem and Karaballi 
(2006).  
On the other hand when we talk about nonlinear 
differential equations, the Riccati differential 
equation possesses great interest and importance. 
The general form of Riccati equation is 
 
𝑢′ = 𝑎(𝑥) + 𝑏(𝑥)𝑢 + 𝑐(𝑥)𝑢2                         (2) 

 
where 𝑎(𝑥), 𝑏(𝑥) and 𝑐(𝑥) are real valued scalar 
functions of 𝑥, see Schwabl (2005). More 
interestingly, the Riccati equation can be 
transformed into second order OLDE by using the 

transformation 𝑦 = −
𝑢′

𝑎(𝑥)𝑢
 as discussed by Busawon 

and Johnson (2005). The study made by Busawon 
and Johnson (2005) and Pala and Ertas (2017) 
showed that Eq. 1 and 2 are inter-convertible. The 
Riccati equations are modelled in many fields of 
quantum mechanics such as Schrödinger equation in 
quantum mechanics see Schwabl (2005) particularly, 
in quantum chemistry, see Fraga et al. (1999), 
industrial control and optimization problems, 
stability analysis of state estimation Cai et al. (2017), 
Kalman filtering Li et al. (2015), power electronics 
and navigation Dehghannasiri et al. (2017), Ahmeid 
et al. (2017), and the Gross-Pitaevskii equation 
(GPE) which occurs in Bose-Einstein condensates 
(BECs), see Yuce and Kilic (2006). These all 
problems involve Riccati differential equation or 
OLDEs of order two; see Al Bastami et al. (2010). 
Many attempts have also been made to solve Riccati 
Eq. 2 in the form of special cases in the literature Al 
Bastami et al. (2010), Batiha (2015), Busawon and 
Johnson (2005), Pala and Ertas (2017), and Sarafian 
(2011) but once again there is no general method to 
solve (2) in its general form Al Bastami et al. (2010).  

All the above literature and discussion shows the 
importance of Eqs. 1 and 2 for their applications but 
at the same time we can observe that every method 
to find the general solution of these equations has its 
own limitations and specific area of implementation 
based on the nature of coefficient functions, see Al 
Bastami et al. (2010), Batiha (2015), Busawon and 
Johnson (2005), Johnson et al. (2008), Kim (2016), 
Mohammed and Zeleke (2015), Pala and Ertas 
(2017), Robin (2007), Sarafian (2011), Saravi 
(2012), and Wilmer III and Costa (2008). In the next 
section, we have discussed the special case of second 
order OLDE on the basis of a new transformation to 
obtain its general solution. We have modified the 
transformation used by (Pala and Ertas, 2017) to 
solve second order OLDEs. 

2. Special case I 

Consider the differential equation 
 

𝑢′′ + 𝑄(𝑥)𝑢′ + 𝑅(𝑥)𝑢 = 0                    (3) 

 
which is the special case of Eq. 1 showing 𝑃(𝑥) = 1. 
Let us consider the coefficient functions 𝑄(𝑥) and 
𝑅(𝑥) as piecewise continuous functions of 𝑥 over the 
real interval 𝐼 ⊆ ℝ.  

Theorem 2.1: The non-trivial solution 𝑢(𝑥) to the 

differential Eq. 3 satisfying 𝑅(𝑥) =
𝑓′′

𝑓
, where 𝑓 =

𝑐𝑒∫
𝑄(𝑥)

2
𝑑𝑥 is non-zero real valued piecewise 

continuous function of 𝑥 over the interval 𝐼0 ⊆ ℝ and 
arbitrary constants 𝑐, 𝑐1, 𝑐2 can be written as 

𝑢(𝑥) = 𝑐1𝑒
−∫

𝑄(𝑥)

2
𝑑𝑥 + 𝑐2𝑥 𝑒

−∫
𝑄(𝑥)

2
𝑑𝑥. 

 
Proof: Consider the transformation 

 

𝑢̃(𝑥) = 𝑓 𝑒
∫
𝑔 𝑢′(𝑥)

𝑢(𝑥)
𝑑𝑥

                         (4) 

 
where 𝑔 is a functions of 𝑥continuous over the 
interval 𝐼0 ⊆ ℝ and 𝑢̃(𝑥) is the transformed function 
corresponding to 𝑢(𝑥). In the following text we use 𝑢 
and 𝑢̃ instead of 𝑢(𝑥) and 𝑢̃(𝑥) respectively. 
Differentiate Eq. 4 w.r.t 𝑥 to get following equations 

 

𝑢̃′(𝑥) =  𝑒∫
𝑔𝑢′

𝑢
𝑑𝑥 [

𝑓𝑔𝑢′

𝑢
+ 𝑓′]  

𝑢̃′′ = 𝑒∫
𝑔𝑢′

𝑢
𝑑𝑥 [

𝑓𝑔𝑢′′

𝑢
−
𝑓𝑔𝑢′2

𝑢2
+
𝑓𝑔′𝑢′

𝑢
+
𝑓′𝑔𝑢′

𝑢
+ 𝑓′′ +

𝑓𝑔2𝑢′2

𝑢2
+

𝑓′𝑔𝑢′

𝑢
]                      (5) 

 
we rearrange Eq. 5 to get 

 
𝑢

𝑓𝑔
𝑒−∫

𝑔𝑢′

𝑢
𝑑𝑥  𝑢̃′′ +

(1−𝑔)𝑢′
2

𝑢
= 𝑢′′ + [

2𝑓′

𝑓
+
𝑔′

𝑔
] 𝑢′ +

𝑓′′𝑢

𝑓𝑔
.        (6) 

 
By comparing Eqs. 3 and 6 we get, 
 

{
 
 

 
 𝑄(𝑥) =

2𝑓′

𝑓
+
𝑔′

𝑔
,

𝑅(𝑥) =
𝑓′′

𝑓𝑔
,

𝑢

𝑓𝑔
𝑒−∫

𝑔𝑢′

𝑢
𝑑𝑥 𝑢̃′′ +

(1−𝑔)𝑢′
2

𝑢
= 0.         

                  (7) 

 

Since 𝑢 is a non-trivial solution therefore 𝑢, 𝑢′ ≠ 0 
and since 𝑓 and 𝑔 are non-zero functions of 𝑥 

therefore 
𝑢

𝑓𝑔
𝑒−∫

𝑔𝑢′

𝑢
𝑑𝑥 ≠ 0. By our assumption as a 

special case if (1 − 𝑔) = 0then 
𝑢

𝑓𝑔
𝑒−∫

𝑔𝑢′

𝑢
𝑑𝑥 𝑢̃′′ +

(1−𝑔)𝑢′2

𝑢
= 0 in Eq. 7 Implies 

 

{
𝑢̃′′ = 0,
𝑔 = 1

                     (8) 

 

Using Eq. 7 the set of equations in (7) become 
 

{
𝑄(𝑥) =

2𝑓′

𝑓
,

𝑅(𝑥) =
𝑓′′

𝑓
.

                     (9) 

 

By integrating (8) w.r.t 𝑥 twice, we get  
 

𝑢̃ = 𝑎0𝑥 + 𝑏0                   (10) 
 

where 𝑎0 and 𝑏0 are arbitrary constants. By 
comparing Eqs. 4 and 10 we get 

 

𝑓 𝑒∫
𝑔𝑢′

𝑢
𝑑𝑥 = 𝑎0𝑥 + 𝑏0  ,    

 

By substituting the values and simplification we get 
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𝑢 =
𝑎0𝑥+𝑏0

𝑓
.                   (11) 

 

Using the equation 𝑄(𝑥) =
2𝑓′

𝑓
 from (9) we get 

 

𝑓 = 𝑐𝑒∫
𝑄(𝑥)

2
𝑑𝑥                   (12) 

 
where 𝑐 is constant of integration and 𝑄(𝑥) and 𝑃(𝑥) 
are mutually connected as given in (9). Using 𝑓 form 
(12) in (11) we get 

 

𝑢 = 𝑐1𝑒
−∫

𝑄(𝑥)

2
𝑑𝑥 + 𝑐2𝑥 𝑒

−∫
𝑄(𝑥)

2
𝑑𝑥                 (13) 

 
where 𝑐1 and 𝑐2are arbitrary constants such that 

𝑐1 =
𝑏0

𝑐
 and 𝑐2 =

𝑎0

𝑐
. 

Eq. 13 gives the general solution of Eq. 3 
containing two linearly independent functions such 
that Wronskian, 

 

𝑊(𝑒−∫
𝑄(𝑥)

2
𝑑𝑥, 𝑥 𝑒−∫

𝑄(𝑥)

2
𝑑𝑥) ≠ 0.  

 
Now we illustrate above stated method with the 

help of examples given below.  
 

Example 2.1: Consider the differential equation𝑢′′ +
2𝑢′ + 𝑢 = 0. On comparison with general Eq. 3 we 
get 𝑄(𝑥) = 2 and 𝑅(𝑥) = 1. Eq. 12 implies that 𝑓 =
𝑐𝑒𝑥 satisfying set of equations in (9).  So, we can 
write general solution by using Eq. 13 as 𝑢 = 𝑐1𝑒

𝑥 +
𝑐2𝑥 𝑒

𝑥. 
 
Example 2.2: We consider another differential 

equation 𝑢′′ + 5𝑥𝑢′ + (
25

4
𝑥2 +

5

2
) 𝑢 = 0. On 

comparison with general Eq. 3 we get 𝑄(𝑥) = 5𝑥 and 

𝑅(𝑥) =
25

4
𝑥2 +

5

2
. Eq. 12 implies that 𝑓 =

𝑐𝑒
5

4
𝑥2satisfying (9). Eq. 13 yields the general solution 

as 𝑢 = 𝑐1𝑒
−
5

4
𝑥2 + 𝑐2𝑥 𝑒

−
5

4
𝑥2 . 

3. Special case II 

Consider the differential equation 
 

𝑃𝑢′′ + (𝑃𝑄 − 𝑃′)𝑢′ + (𝑃)2𝑅 𝑢 = 0                 (14) 

 
which is a special case of Eq. 1 having 𝑃, 𝑄 and 𝑅 as 
piecewise continuous functions of 𝑥 over the real 
interval 𝐼 ⊆ ℝ.  

 
Theorem 3.1: The non-trivial solution to the 

differential Eq. 14 satisfying 𝑅 =
𝑓′′

𝑓 𝑃
, where 𝑓 =

𝑐′𝑒
∫
𝑄
2𝑑𝑥

√𝑃
 and 𝑃 are non-zero real valued piecewise 

continuous functions of 𝑥 over the interval 𝐼0 ⊆ ℝ 

can be written as 𝑢 = 𝑐3√𝑃𝑒
−∫

𝑄

2
𝑑𝑥 + 𝑐4√𝑃𝑥 𝑒

−∫
𝑄

2
𝑑𝑥, 

where 𝑐′, 𝑐3, 𝑐4 are arbitrary constants. 
  
Proof: Consider the transformation 

 

𝑢̃ = 𝑓 𝑒∫
𝑔 𝑢′

𝑃𝑢
𝑑𝑥.                   (15) 

 
Differentiate Eq. 15 w.r.t 𝑥 twice  
 

𝑢̃′ =  𝑒∫
𝑔𝑢′

𝑃𝑢
𝑑𝑥 [

𝑓𝑔𝑢′

𝑃𝑢
+ 𝑓′]  

𝑢̃′′ = 𝑒∫
𝑔𝑢′

𝑃𝑢
𝑑𝑥 [

𝑓𝑔𝑢′′

𝑃𝑢
+
𝑓𝑔′𝑢′

𝑃𝑢
+
𝑓′𝑔𝑢′

𝑃𝑢
−
𝑓𝑔𝑢′2

𝑃𝑢2
−
𝑓𝑔𝑃′𝑢′

𝑃2𝑢
+ 𝑓′′ +

𝑓𝑔2𝑢′2

𝑃2𝑢2
+
𝑓′𝑔𝑢′

𝑃𝑢
]                   (16) 

 

Multiply (16) by 𝑒−∫
𝑔𝑢′

𝑃𝑢
𝑑𝑥 𝑃

2𝑢

𝑓𝑔
 and rearrange to get 

 
𝑃2𝑢

𝑓𝑔
 𝑒−∫

𝑔𝑢′

𝑃𝑢
𝑑𝑥 𝑢̃′′ + (𝑃 − 𝑔)

𝑢′2

𝑢
= 𝑃𝑢′′ + (2

𝑃𝑓′

𝑓
− 𝑃′ +

𝑃𝑔′

𝑔
) 𝑢′ +

𝑓′′ 𝑃2

𝑓𝑔
𝑢                   (17) 

 
By comparing (17) with (14) we get, 
 

{
 
 

 
 𝑄 =

2𝑓′

𝑓
+
𝑔′

𝑔
,

𝑅 =
𝑓′′

𝑓𝑔
,

𝑃2𝑢

𝑓𝑔
  𝑒−∫

𝑔𝑢′

𝑃𝑢
𝑑𝑥 𝑢̃′′ + (𝑃 − 𝑔)

𝑢′2

𝑢
= 0

                (18) 

 
Since 𝑢 is a non-trivial solution therefore 𝑢, 𝑢′ ≠ 0 

and since 𝑃, 𝑓 and 𝑔 are non-zero functions of 𝑥 

therefore 
𝑃2𝑢

𝑓𝑔
  𝑒−∫

𝑔𝑢′

𝑃𝑢
𝑑𝑥 ≠ 0. By our assumption as a 

special case if (𝑃 − 𝑔) = 0then 
𝑃2𝑢

𝑓𝑔
  𝑒−∫

𝑔𝑢′

𝑃𝑢
𝑑𝑥  𝑢̃′′ +

(𝑃 − 𝑔)
𝑢′2

𝑢
= 0 in (18) Implies 

 

{
𝑢̃′′ = 0,
𝑔 = 𝑃.

                   (19) 

 
Using (19) the set of equations in (18) become 

 

{
𝑄(𝑥) =

2𝑓′

𝑓
+
𝑃′

𝑃
,

𝑅(𝑥) =
𝑓′′

𝑓 𝑃
.

                   (20) 

 
Integrating 𝑢̃′′ = 0 in (19) w.r.t 𝑥 twice we get 

  
𝑢̃ = 𝑎1𝑥 + 𝑏1                   (21) 

 
where 𝑎1 and 𝑏1 are arbitrary constants. By 
comparing (15) and (21) we get 

 

𝑓 𝑒∫
𝑔𝑢′

𝑃𝑢
𝑑𝑥 = 𝑎1𝑥 + 𝑏1 ,    

 
By substituting values and simplification we get 

 

𝑢 =
𝑎1𝑥+𝑏1

𝑓
.                   (22) 

Now we obtain the value of 𝑓 from (18) as 
 

𝑓 =
𝑐′𝑒∫

𝑄
2𝑑𝑥

√𝑃
                   (23) 

 

where 𝑐′ is constant of integration and 𝑃, 𝑄 and 𝑅 
are relationally connected as seen from (20).  
Substituting 𝑓 from (23) in (22), we get 

𝑢 = 𝑐3√𝑃𝑒
−∫

𝑄

2
𝑑𝑥 + 𝑐4√𝑃 𝑥 𝑒

−∫
𝑄

2
𝑑𝑥                 (24) 
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where 𝑐3 and 𝑐4 are arbitrary constants such that 
 

 𝑐3 =
𝑏1

𝑐′
 

 
and 
 
 𝑐2 =

𝑎1

𝑐′
. 

 
Eq. 13 gives the general solution of (3) containing 

two linearly independent functions such that 
Wronskian, 

 

𝑊(√𝑃𝑒
−∫

𝑄

2
𝑑𝑥, √𝑃 𝑥 𝑒

−∫
𝑄

2
𝑑𝑥) ≠ 0.  

 
To demonstrate the utility of above stated method 
we present the following examples. 

 
Example 3.1: Consider the differential equation 

6𝑥𝑢′′ − 6𝑢′ −
3

2𝑥
𝑢 = 0. On comparison with general 

Eq. 14 we get 𝑃 = 6𝑥 , 𝑄 =
2

𝑥
 and 𝑅 = −

1

24𝑥3
. Eq. 23 

implies that 𝑓 = 𝑐′√
𝑥

6
 satisfying (18). So, (24) implies 

the general solution as 𝑢 = 𝑐1√𝑥 + 𝑐2
1

√𝑥
. 

 
Example 3.2: Consider the problem   
 
4𝑢′′ + 32𝑥𝑢′ + 16 (4𝑥2 − 3)𝑢 = 0                 (25) 

 
On comparison with general Eq. 14 we get 𝑃 =
2 ,   𝑄 = 8𝑥 and 𝑅 = 4𝑥2 − 3. Eq. 23 implies that 𝑓 =

𝑐′𝑒2𝑥
2
 which do not satisfy the condition (18) namely 

𝑅 ≠
𝑓′′

𝑓𝑔
 where 𝑔 = 𝑃. So the problem cannot be 

solved by using above stated method.  For the 
further explanation and solution we discuss the 
general case in following text.  

4. General form of second order OLDE 

The transformation represented by Eq. 15 in 
special case II involves 𝑃 which yields the general 
solution on conditional basis (i.e. Solution exists only 

if 𝑓 =
𝑐′𝑒

∫
𝑄
2𝑑𝑥

√𝑔
 satisfies the condition 𝑅 =

𝑓′′

𝑓𝑔
) and the 

method get restricted to the special case of general 
second order differential Eq. 1. In the next theorem 

we have reduced the condition 𝑅 =
𝑓′′

𝑓𝑔
 so that this 

method can be worked in the larger spectrum.    
 

Theorem 4.1: The non-trivial solution 𝑢(𝑥) to the 

differential Eq. 14 is given by 𝑢(𝑥) =
𝑐5 𝑢

𝑓
, where 𝑓 =

𝑐′′𝑒
∫
𝑄
2𝑑𝑥

√𝑃
  and  𝑢̃ can be obtained by solving 𝑢̃′′ −

(
𝑓′′

𝑓 
− 𝑃𝑅)  𝑢̃ = 0 where 𝑓, 𝑃 ≠ 0 are real valued 

piecewise continuous functions of 𝑥 over the interval 
𝐼0 ⊆ ℝ and 𝑐′′, 𝑐5 are arbitrary constants.  
Proof: By using same transformation discussed in 
case II and Eq. 17 and imposing the condition 

𝑃2𝑢

𝑓𝑔
 𝑢̃′′ 𝑒−∫

𝑔𝑢′

𝑃𝑢
𝑑𝑥 + (𝑃 − 𝑔)

𝑢′2

𝑢
= 𝑆 𝑢                    (26) 

 
where 𝑆 is the function of 𝑥 such that (14) becomes  

 
𝑃𝑢′′ + (𝑃𝑄 − 𝑃′)𝑢′ + (𝑃)2𝑅 𝑢 = 𝑆 𝑢.                  (27) 

 
If we take 𝑔 = 𝑃 as given in (19) then (26) becomes 

 
𝑃2𝑢

𝑓𝑔
 𝑢̃′′ 𝑒−∫

𝑔𝑢′

𝑃𝑢
𝑑𝑥 = 𝑆 𝑢  ,  

 

or 
 

𝑢̃′′ =  
𝑔

𝑃2
𝑓 𝑒∫

𝑔𝑢′

𝑃𝑢
𝑑𝑥𝑆.                  (28) 

 
Substituting (15) in (28) and by using 𝑔 = 𝑃 as given 
in (19), we get 

 

𝑢̃′′ −
𝑆

𝑃
𝑢̃ = 0.                    (29) 

 
If we choose  

 

𝑆 = 𝑃2 (
𝑓′′

𝑓 𝑃
− 𝑅)                    (30) 

 

where (
𝑓′′

𝑓 𝑃
− 𝑅) is a factor which makes equation 

solvable by removing the condition given in theorem 
3.1. Using (30) in (29) we get 

 

𝑢̃′′ − (
𝑓′′

𝑓 
− 𝑃𝑅)  𝑢̃ = 0.                  (31) 

 
The solution to (14) depends upon the solution of 

(31) which is very simple second order differential 
equation as compared to (14). We can solve (31) by 
classical methods to obtain the value of 𝑢̃. By using 
𝑔 = 𝑃 as given in (19), the Eq. 15 becomes 

 

𝑢 =
𝑢

𝑓
                    (32) 

 

where 𝑓 can be obtained from 𝑄(𝑥) =
2𝑓′

𝑓
+

𝑃′

𝑃
 given 

in (20) as  
 

𝑓 =
𝑐′′𝑒∫

𝑄
2
𝑑𝑥

√𝑃
                   (33) 

 

where 𝑐′′ is constant of integration. By combining 
(32) and (33) we get the general solution as 

  

𝑢 = 𝑐5𝑢̃√𝑃𝑒
−∫

𝑄

2
𝑑𝑥                   (34) 

 

where 𝑐5 =
1

𝑐′′
  and 𝑢̃ is obtained by (31) contains 

two parameter family of solutions. 
 

Example 4.1: We continue with the problem given 
in example 3.2. By using (30) we choose 𝑆 = 64 and 
rearrange the problem to get  
 
4𝑢′′ + 32𝑥𝑢′ + 16 (4𝑥2 + 1)𝑢 = 64𝑢                    (35) 

 
Eq. 31 implies 
  
𝑢̃′′ − 16𝑢̃ = 0.                    (36) 
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By solving (36), we get 𝑢̃ = 𝑎2𝑒
4𝑥 + 𝑏2𝑒

−4𝑥. Thus 
(34) implies the general solution to (35) as  

 
𝑢 = 𝑐6𝑒

−2𝑥2+4𝑥 + 𝑐7𝑒
−2𝑥2−4𝑥 , 

 
where 𝑐6 and 𝑐7 are arbitrary constants.  

The literature in Shivakumar and Zhang (2013) 
gives the power series solution of 𝑦′′ − 𝑓(𝑥)𝑦 = 0 
which may support us to solve (31). 

 
Corollary 4.1: The general solution to the 
differential Eq. 3 can be obtained by using 𝑃 = 1 in 

theorem 4.1 and given by the equation 𝑢 =
𝑐5 𝑢

𝑓
, 

where 𝑓 = 𝑐′′𝑒∫
𝑄

2
𝑑𝑥  and  𝑢̃ can be obtained by solving 

𝑢̃′′ − (
𝑓′′

𝑓 
− 𝑅)  𝑢̃ = 0  and 𝑓 ≠ 0 is real valued 

piecewise continuous function of 𝑥 over the interval 
𝐼0 ⊆ ℝ and 𝑐′′, 𝑐5 are arbitrary constants. 

 
Example 4.2: Consider the differential equation 

  
𝑢′′ + 4𝑢′ − (𝑥 − 4)𝑢 = 0.                   (37) 

 
By comparing (37) with (3) we have 𝑄 = 4 and 

𝑅 = (4 − 𝑥). According to corollary 4.1, 𝑓 = 𝑐′′𝑒2𝑥 

and 𝑢̃′′ − (
𝑓′′

𝑓 
− 𝑅)  𝑢̃ = 0 implies  

 
𝑢̃′′ − 𝑥𝑢̃ = 0.                    (38) 

 
Eq. 38 is an Airy differential equation with the 

solution 𝑢̃ = 𝑐6𝐴𝑖(𝑥) + 𝑐7𝐵𝑖(𝑥), where  
 

𝐴𝑖(𝑥) = 1 + ∑
𝑥3𝑘

2⋅3⋅5⋅6⋅⋅⋅(3𝑘−3)⋅(3𝑘−1)⋅3𝑘
∞
𝑘=1   

 
and 

 

𝐵𝑖(𝑥) = 𝑥 + ∑
𝑥3𝑘+1

3⋅4⋅6⋅7⋅⋅⋅(3𝑘−2)⋅3𝑘⋅(3𝑘+1)
∞
𝑘=1 .   

 
Hence the general solution to (37) can be written 

as 𝑢 = 𝑐6𝑒
−2𝑥𝐴𝑖(𝑥) + 𝑐7𝑒

−2𝑥𝐵𝑖(𝑥), where 𝑐6 and 𝑐7 
are arbitrary constants.  

5. Conclusion  

The main idea discussed in this paper is to 
investigate and develop a method of solution to 
OLDEs of order two by using transformation 
technique. The role of coefficient functions of second 
order OLDE in the solution process has also been 
discussed to develop the solution procedure. We 
started working with the special case of second 
order OLDE and proved the solution formula and its 
procedure through examples. This provided us the 
basis to extend the idea for general cases by 
removing conditions on coefficient functions and we 
developed new solution formulae and the working 
procedures to make this technique applicable to 
general problems. We hope that our work would be 
useful for the researchers in the field of differential 

equations, advanced engineering and applied 
sciences. 
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